BRUCE AND ASTRID MCWILLIAMS Center for Cosmology

Cosmology with CMB Secondary Anisotropies

Nick Battaglia McWilliams Fellow McWilliams Center for Cosmology Carnegie Mellon University

Aravind Natarajan (CMU), Paul La Plante (CMU), Phil Mansfield (CMU), Hy Trac (CMU), Dick Bond (CITA), Amir Hajian (CITA), Christoph Pfrommer (HITS), Jon Sievers (Princeton, UKZN), David Spergel (Princeton), Renyue Cen (Princeton), Abraham Loeb (Harvard)

Berkeley Oct. 22 2013

Primary CMB The foundation of modern cosmology

Planck Satellite (ESA)

-Can we constrain cosmology using CMB secondaries?
-What are limiting factors?

Statistically speaking

Thermal Sunyaev-Zel'dovich Effect

Inverse Compton scattering of CMB photons

Thermal Sunyaev-Zel'dovich Effect

Secondary anisotropies in the CMB

$$\frac{\Delta T}{T_{CMB}} = g_{v} y$$

$$y = \frac{k_b \sigma_T}{m_e c^2} \int n_e T_e dl$$

Integrated pressure

relativistic terms are small and not included

Kinetic Sunyaev-Zel'dovich Effect

Doppler boosting of CMB photons

"Standard" Measurements

Number counts or power spectrum

Also: higher order meas. e.g. Wilson+13, Hill+13, Bhattacharya+13 Crawford+13 Tgas

Mass Function Ex.

- X-ray (Chandra)
 measurements
 using the Y_x M
 relation
- Use N-body simulations to determine N(>M)
- ~50 Clusters

Mass proxies & form-factors

Cluster counts

Selection function & Mass proxy

$$N = \int_{0}^{z_{\text{max}}} dz \frac{dV}{dz} \int dM \frac{dn(M,z)}{dM}$$

tSZ power spectrum $A_{tSZ} \propto \sigma_8^8$

Gastrophysics

$$C_{l} = g_{v}^{2} \int_{0}^{z_{\text{max}}} dz \frac{dV}{dz} \int dM \frac{dn(M, z)}{dM} |\widetilde{y}_{l}(M, z)|^{2}$$

+ Clustering of clusters (Sub-dominant)

X-roads Cosmology & Astrophysics

Latest cluster cosmology

Limited by uncertainty in the Y-M relation & Pressure profile

e.g. Benson et al 2013, Hasselfield et al 2013, Rozo et al 2013, & Planck Coll. XX 2013

Simulations are a tool for understanding and quantifying the important gastrophysics, biases, and scatter in surveys

Modeling the ICM

Simulations or

(Semi)Analytical

e.g. Da Silva et al 2000, Springel 2001, Bond et al 2002, BBPSS 2010

e. g. Komatsu & Seljak 2001, Ostriker et al. 2005, Bode et al 2009(12), Sehgal et al 2010, Shaw et al 2010, Trac et al 2011

Processes that need to be included (Sub-grid)

- Radiative cooling
- Star formation
- Feedback (AGN, stellar)
- Non-thermal pressure support P_{KIN} , CR, P_{B} ...
- Asphericity and sub-structure
- Plasma processes
- etc...

The ICM is complex!

Our Simulations

Box lengths 200-400 Mpc $h^{-1}(256^3, 512^3)$ Halo Mass resolution 10^{13} M_o h^{-1} Gadget2+ (SPH) with 3 "physics" models

- Non-radiative (Adiabatic)
- Radiative cooling + SF + SNe + CR
- "AGN" feedback (NEW!)
- ~ 800 clusters with $M_{200} > 10^{14} \,\mathrm{M}_{\odot} \,h^{-1}$
- Lots of data to still be mined
- A new set of simulations is coming soon

Simulation Pth Profile

Planck Pth Profile

tSZ theory PS

$C_{\ell}(M,z)$

Variance in Pth Profiles

Impact:

tSZ powerspectrum halocalculationsY-M relation(scatter)

ICM inhomogeneities

Simulated cluster

Spherical fit from simulations

ICM inhomogeneities

ICM inhomogeneities & tSZ PS

$$C_{l} = g_{v}^{2} \int_{0}^{z_{\text{max}}} dz \frac{dV}{dz} \int dM \frac{dn(M, z)}{dM} \underbrace{\widetilde{y}_{l}(M, z)}^{2}$$

+ Clustering of clusters (Sub-dominant)

Gastrophysics

Self consistently compared tSZ power spectrum methods

- Use the global pressure profile from the simulations:
- 1) Given a Mass Function: calculate the analytical spectrum
- 2) Paste the global pressure profile at cluster locations in the simulations
- 3) FFT the full simulation maps

Determine systematic differences between methods

ICM inhomogeneities & tSZ PS

- High mass halos 25% at ℓ ~3000
- All masses 15% at € ~3000
- Additional power from Non-uniformity must be included in Analytic calculations

State of tSZ PS

State of tSZ PS

State of tSZ PS

Planck y-map

tSZ PS from y-map

Can we do better?

What about cross correlations?

Cross Correlations aka Stacking

Long history of stacking WMAP data on cluster locations

Cross Correlations

Cross Correlations aka Stacking

More stacking with Planck

Cross Correlations

$$\Delta T(\hat{\theta}) = T_{SZ} + T_{CMB} + T_{CIB} + T_{fg} + T_{PS} + N,$$

$$\delta_n(\hat{ heta}) = rac{n(\hat{ heta}) - ar{n}}{ar{n}}.$$

n → X-ray cluster catalog

Removes systematics (caution...)

$$\Delta T(\hat{\theta}) = T_{SZ} + T_{CMB} + T_{CIB} + T_{fg} + T_{PS} + N,$$

Cross Correlations

Used the raw Planck at 100-857 GHz Also used the WMAP9 94 GHz

Cluster Catalog

Subsample of the MCXC (flux lim.)

RBC

REFLEX

BCS

CIZA

~800 clusters

M₅₀₀ → L_X - M relation calibrated from the REXCESS sample (not core excised ~24% scat.) (we include a 20% HSE bias)

Auto & Cross spectra (ignoring clustering)

tSZ auto power spectrum $A_{tSZ} \propto \sigma_8^8$

$$C_{l} = g_{v}^{2} \int_{0}^{z_{\text{max}}} dz \frac{dV}{dz} \int dM \frac{dn(M,z)}{dM} |\widetilde{y}_{l}(M,z)|^{2}$$

tSZ cross power spectrum

Gastrophysics

$$C_{\ell}^{SZ\times n} = f_{\nu} \int_{0.04}^{\infty} \frac{\mathrm{d}V}{\mathrm{d}z} \mathrm{d}z \int_{0}^{\infty} \frac{\mathrm{d}n(M,z)}{\mathrm{d}M} \tilde{y}_{\ell}(M,z) \Theta(M,z) \mathrm{d}M,$$

 $A_X \propto \sigma_8^{7.4} \Omega_M^{1.9}$ High mass, low redshift clusters

Selection function (Gastrophysics)

Cross spectra theory

Cross spectra

Combined Xspec

Xspec Results

Model	Spectrum	Fit Parameter	Derived Parameters		
		A_{X}	$\sigma_8(\Omega_M/0.3)^{0.26}$	$\sigma_8(WMAP9)$	$\sigma_8(\text{Planck13})$
$AGN\ feedback$	overdensity	1.06 ± 0.06	<u> </u>	_	_
	number-count	1.36 ± 0.14	0.796 ± 0.011	0.812 ± 0.009	0.810 ± 0.007
$radiative\ cooling$	overdensity	1.04 ± 0.06			
	number-count	1.33 ± 0.14	0.793 ± 0.011	0.811 ± 0.009	0.809 ± 0.007
shock heating	overdensity	0.88 ± 0.05	_	_	_
	number counts	1.12 ± 0.12	0.775 ± 0.011	0.802 ± 0.009	0.801 ± 0.008
AGN feedback +10%	overdensity	0.95 ± 0.05	——————————————————————————————————————		
	number-count	1.53 ± 0.15	0.809 ± 0.011	0.819 ± 0.009	0.815 ± 0.007
AGN feedback -10%	overdensity	1.16 ± 0.07	_	_	_
	number-count	1.25 ± 0.13	0.787 ± 0.010	0.808 ± 0.009	0.805 ± 0.007
AGN feedback all	number-count	1.38 ± 0.19	0.797 ± 0.015	0.812 ± 0.010	0.812 ± 0.008

Rule out an extreme ICM model (shock heating) Include scaling relation uncertainties by combining the posterior probabilities

Constraints

Can we do better? Yes we can!

Planck ⊗ X-ray catalogs constrains "Gastrophysics" and cosmology

2x smaller measurement errors than the Planck y spectra

Constrain "contaminants" to the tSZ signal

eRosita will be even better!

21cm signal

Ly α absorption in QSO spec

hydrogen + radiation → proton + electron + heat

γ first galaxies, QSOs Thomson scattering → CMB

Current constraints

Big Questions

Understand these first sources: stars, galaxies and quasars
Mean redshift (\bar{z}) Duration (Δ_z)
How much can the kSZ tell us?

Theoretical predictions

Semi-analytic approach:
 Excursion set (Bond+91)

$$\zeta F_{\rm coll} \geq 1$$

Simulations approach:
 Radiative Transfer + Hydro

Barkana & Loeb 01
Furlanetto+04; Zahn+05,07; Mesinger &
Furlanetto 07; Geil & Wyithe 08; Alvarez+09;
Thomas+09; Choudhury+09; Santos+10;
Mesinger+11

Gnedin & Abel 01; Ciardi+01; Maselli+03; Alvarez+06; Mellema+06; Iliev+06 Trac & Cen07; McQuinn+07; Trac+08; Aubert& Teyssier 2008; Altay +08; Croft & Altay 08; Finlato+09; Petkova & Springel 2009

Difficult to directly compare semi-analytic method to simulations

Direct simulations of large cosmological volumes are not possible

Our Simulations

Model	L (Mpc/h)	DM	Gas	Rays	Comments
L100N	100	29 Billion			N-body only
L1Q0A	100	2048 ³	2048 ³	17 Billion	Late reionization $\overline{z} \sim 8$
L100B	100	2048 ³	2048 ³	17 Billion	Early reionization $\overline{z} \sim 10$

Hybrid approach (Trac+08)

High-res N-body → radiation sources (~10⁸ M_☉)

RadHydro →N-body, Hydro, RT

 $N_{\gamma}(M,z)$ Halo model (Trac & Cen 07, BTCL 2013)

Simulations

ionized density

z reionization field

Model Motivation

constructed field $z_{RE} \rightarrow 90\%$ ionized

Correlation between density and z_{RE}

Correlation + Bias

Construct

$$\begin{split} \delta_{\rm m}(\mathbf{x}) &\equiv \frac{\rho(\mathbf{x}) - \bar{\rho}}{\bar{\rho}}, \\ \delta_{\rm z}(\mathbf{x}) &\equiv \frac{[1 + z_{\rm RE}(\mathbf{x})] - [1 + \bar{z}]}{1 + \bar{z}} \end{split}$$

Functional Form

$$b_{\rm mz}(k) = \frac{b_{\rm o}}{(1 + k/k_{\rm o})^{\alpha}}$$

The Model

Built off of RadHydro

- Apply filter W_z →
- Applicable to Large N-body
- Fast (just FFT)
- Parameter space exploration
- 3 parameters $(\overline{z}, k_o, \alpha)$

$$W_{\rm z}(k) \equiv \frac{b_{
m mz}(k)\Theta(k)}{\Xi(k)}$$

The Model

Built off of RadHydro

- Apply filter W_z →
- Applicable to Large N-body
- Fast (just FFT)
- Parameter space exploration
- 3 parameters (\overline{z} , k_o , α)

Simulation

Model

Simulation

Model

 $x_e (z = 8.1) \sim 50 \% ionized$

Statistical comparison of x_i fields Fine tuned to match simulations...

Statistical comparison of x_i fields Fine tuned to match simulations...

Matches well!

Without tuning!

Results - xi (z)

Ionization history for all cells

5 models shown

- 1. Fiducial
- 2. Long duration
- 3. Short duration

vary \overline{z}

$$b_{\rm mz}(k) = \frac{b_{\rm o}}{\left(1 + k/k_{\rm o}\right)^{\alpha}}$$

kSZ Observables

Integrated maps, e.g. kSZ

Construct "proper" light cones

3 realizations per model

integrate from z > 5.5

kSZ Observables

Integrated maps, e.g. kSZ

kSZ Observables

Integrated maps, e.g. kSZ

patchy kSZ power spectrum typical power ~1-2 µK²

sensitive to both \overline{z} and Δ_z

(Zhan+12; Messinger+12)

CMB polarization

(Mortonson & Hu 10)

Scattering of CMB γ

τ & EE power spectrum

sensitive to \overline{z} , not to Δ_z

kSZ Fitting Function

 Recent constraints from ACT & SPT

$$D_{\ell=3000}^{\mathrm{kSZ}} \simeq 2.02 \mu \mathrm{K}^2 \left[\left(\frac{1+\bar{z}}{11} \right) - 0.12 \right] \left(\frac{\Delta_{\mathrm{z}}}{1.05} \right)^{0.47}$$

(Sievers +13, Zahn +12)

Caveats...

(Park+13)

kSZ constraints

 Recent constraints from ACT & SPT

(Sievers +13, Zahn +12)

Understand: low-z kSZ tSZ x CIB

kSZ constraints

Planck + ACTPol + SPT-POL + ...

kSZ Summary

Future: 21cm (La Plante+13), non-linear bias...

Final thoughts

Secondary anisotropies are full of information! Growth of structure - Astrophysics -Reioniaztion

There's already a plethora of observations of CMB secondaries (and more are coming)
Both simulations and semi-analytic methods are required to extract this information

Data driving the theory...

Thank you!